CS152: Computer Systems Architecture
Hands-On Processor Development

(1
>

Sang-Woo Jun

Winter 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Canonical Microprocessor Design Flow

RTL Design

\/:‘>

Long Toolchain

N

“Tapeout”

Image source: Alinja, English Wikipedia

L ol

= =k

Verilog, VHDL, lots of custom, in-house tools...

SimUIation Combination logic : Register

RTL (Register-Transfer-Level)

Details are way outside scope of cs152
Standard cell library from target foundry/technology is an input -

Layers of wires =

Logic gates

GDSII/OASIS format sent to foundry,
receive first spin chip in a few months

Image source: David Carron, English Wikipedia

Prototyping Using FPGAS

1 Field-Programmable Gate Array
J A grid of “Configurable Logic Blocks” (CLB)

o Each CLB can be programmed to act like logic gates (stores truth table)
o A flexible on-chip network can act like wires

(J Can be reconfigured in seconds “Configurable logic block (CLB)”
(d CLBs and on-chip network emulating actual silicon \
o Not as dense, not as fast
o Great for prototyping!] S L
I) e e)
o |) e o
) e o
e]
o e e

Toolchains for FPGA development

J Typically vendor-specific
o Xilinx: Vivado, Vitis
o Intel/Altera: Quartus
o Lattice: Diamond

(J Robust open-source projects
o Yosys, nextpnr, arachnepnr, icestorm, ...
o Mostly centered around low-power Lattice FPGAs
o We will use this!

High-Level
Hardware-Description Languages

(J Modern circuit design is aided heavily by Hardware-Description
Languages
o Relatively high-level description to compiler
o Toolchain performs “synthesis”, translating them into gates, also place, route, etc
o High-end chips require human intervention in each stage for optimization

J Wide spectrum of languages and tools
o Register-Transfer-Level (RTL) languages: Verilog, VHDL, ... ticient difficult to program
* Registers (state), and combinational logic

o “High-Level Synthesis”: Uses familiar software programming languages
* C-to-gates, OpenCL, ... Easy to program, inefficient
» Typically compiles to Verilog/VHDL

Bluespec System Verilog (BSV)

J “High-level HDL without performance compromise”

(d Comprehensive type system and type-checking
o Types, enums, structs

(J Static elaboration, parameterization (Kind of like C++ templates)
o Efficient code re-use

[Efficient functional simulator (bluesim) printf’s and user input during simulation!
(J Most expertise transferrable between Verilog/Bluespec

In a comparison with a 1.5 million gate ASIC coded in Verilog, Bluespec demonstrated a 13x
reduction in source code, a 66% reduction in verification bugs, equivalent speed/area
performance, and additional design space exploration within time budgets.

-- PineStream consulting group

Low-level control flow design

PCWrite

@

Instruction
memory

IF/DWrite

/ Hazard \
detection <
-\ u

ID/EX.MemRead

nit

X

"/

Registers

[Instruction

IF/ID.RegisterRs -

IF/1D.RegisterRt

EX/MEM
ws |_I\£EM/WB
M wB
™ M
ALU P u
Data > X
" memory

IF/ID.RegisterRt Rt,
IF/ID.RegisterRd Rd,
ID/EX.RegisterRt —
Rs
Rt

Soicac

Forwarding

unit

)=

Not very intuitive... We will revisit with code later

Hands-On Processor Development

J We will experience the impact of ideas we cover
o Using synthesizable processor implementation in Bluespec
o Synthesized for an FPGA using open-source tools

“How does this change effect the critical path?”

“How does this change effect the cycle count?”

DO O

“How does this change effect chip resource utilization?”

CPU Time = Instruction Count X CPI X Clock Cycle Time

Getting Started

J Virtual machine with all tools installed, available at:
o c¢s152-ubuntu.ova (4 GB!)
https://drive.google.com/file/d/1lia-u3XWJO8EQI6KZEykJhkEd4Htt2tAz/view?usp=sharing

d First, install Oracle Virtualbox

o Open-source virtual machine
o High performance with minimal configuration

Getting Started

J Import the downloaded VM

Import Virtual Appliance

Appliance to import

¥ Oracle VM VirtualBox Manager
File Machine Help
(f’ Preferences...

Import Appliance...
Export Appliance...
Mew Cloud VM...

Virtual Media Manager...

Host Metwork Manager...
Metwork Operations Manager...
Check for Updates...

Reset All Warnings

e P kI O28

Exit

Ctrl+G

Ctrl+1
Ctrl+E

Ctrl+D
Ctrl+H

Ctrl+

R L&
Export Mew Add

ualBox!

ation
il tools and
s and
5 on your
port, add
ing
buttons.
of
ent using
button.

v to get

www . virtualbox, org for mare
information and latest news.

VirtualBox currently supports importing appliances saved in the Open Virtualization Format (OVF). To continue, select the file to import below.

!

Expert Mode

Mext

Cancel

-

If core count/memory allowance needs changing

Getting started

Impart Virtual Appliance

Appliance to import

[V I s 52bun. ova @

Appliance settings

Virtual System 1)
g5 Name cs152-ubuntu % Oracle VM VirtualBox Manager — O >
B Guest 05 Type Pa Ubuntu (64-bit) . .
I . . —Change core/memory assignment if necessary
ag o= { } -
& ram 2048 MB New Settings
(=) DVD i [=| General [=| preview
i) Name: cs152-ubuntu
‘{? USB Controller Operating System: Ubuntu (54-bit)
({8 Sound Card 71 I1CH AC9T v [System
You can modify the base folder which will host all the virtual machines. Home folders can also be individually (per virtual machine) Base Memory: 2048 MB
madified., Processors: 4
Boot Order: Floppy, Optical, Hard Disk
Acceleration: VT-xfAMD-V, Nested Paging,
KVM Paravirtualization
C:\Users\aradi\VirtualBox VYMs w
MALC Address Policy: | Indude only MAT network adapter MAC addresses b |§] Display
Additional Qptions: Import hard drives as VDI Video Memary: 16 MB
Graphics Controller: VMSYGA
Remote Desktop Server: Disabled
Recording: Disabled

Guided Mode | Restore Defaults Import Cancel Storage

Getting started

J You can work in the VM window, OR

J Connect to it via a terminal
o Putty, MobaXterm, OpenSSH, etc

d The VM forwards its

o port 22 (ssh) to
o 3022
o Connecttoit by sshcs152@127.0.0.1:3022

J Login: cs152/cs152

J Run ./clone-ulx3s.sh
Check it out!

@ D] @ ,9 @ @l] -@ @ Right Control

mailto:cs152@127.0.0.1:3022

Trying simulation

J cs152-rv32i-bsv/projects/rv32i/

d Compiling and running the simulation
o “make bsim” — Stands for “bluesim”

o “make runsim” creates two files
» system.log : log of processor operation

* output.log : log of software output

J Default benchmark: Sudoku solver
o Source: sw/minisudoku.c
o Resulting assembly: sw/minisudoku.dump
o Binary for processor: sw/minisudoku.bin

RTL Design

U=

Long Toolchain

155 0000023c <solve=>:
23c:—» fdo1e113
240:- 02112623
244:. 02812423
248:- 03010413
24c:- fcad2e23
250:- fcb42c23
254:. fd842703
258:- 0O0fEO793
25c:—~ 00e7d663

Simulation

- addi—~ sp,sp,-48

. Sw— ra,44(sp)

- sw— s0,40(sp)

. addi- s0,sp, 48

. sw- ab, -36(s0)

. sw— al, -40(s0)

- 1lw— a4, -40(s0)

. addi- a5, zero,15

- bge-ab, a4, 268 <solve+0x2c>

Example simulation execution

Cycle PC

system.log

[OX00000600:0Xx0006¢] Fetching instruction count Ox0000
sent all/ data 4116

Processor starting

[0X000020d2:0x0000] decoding OX00002137
[6X000020d3:0X0000] Executing

[OX000020d4:0X0000] Writeback writing 00002000 to 2
[0X000020d5:0x0004] Fetching instruction count 0x0001
[OX000020d9:0x0004] decoding 0x33coe0ef
[Ox000020da:0x0004] Executling

output.log

W oo~k wMmpPE

[6X00021302:0x0498] Writeback writing 0000049c to O
[0X00021303:0x0008] Fetching instruction count 0x40d4
[0X00021307:0x0008] decoding OXOOOEOE00
[0X00021308:0x0008] Executing

Reached unsupported instruction

Total Clock Cycles = 135944

Total Instruction Count = 16596

Dumping the state of the processor

pc = OXOOOEEEO8

Quitting simulation.

Trying synthesis

J Synthesis to hardware

o “make | tee build.log”
o Log fileis long!

d Example log files from synthesis:
o Look for “Device utilisation” [sic]: Info: Device utilisation:

Info: - TRELLIS_SLICE: 4982/41820 11%

o Look for “Max frequency” :

Info: Max frequency for clock '$glbnet$CLK clk 25mhz$TRELLIS IO IN': 69.80 MHz (PASS at 25.00 MHz)

o Look for “Critical path report for clock”:

: Critical path report for clock '$glbnet$CLK clk 25mhz$TRELLIS IO IN' (posedge -> posedge):
: curr total

0.5 0.5 Source main_proc.imemRespQ.data0@ reg TRELLIS FF_Q 30 DI PFUMX Z SLICE.QO
1.5 2.0 Net main proc.imemRespQ D OUT[1l] budget 5.041000 ns (33,27) -> (33,28)

Measuring the performance of our processor

J From the simulation, we can measure the clock cycles to completion

J From synthesis, we can measure the clock speed

d (cycle count)/(clock frequency) = time to completion!

 In our previous example, 135,944 cycles / 69.80 MHz = 0.0019s
o Is this good?
o We can do MUCH better!

CS152: Computer Systems Architecture
Dive Into The Example Processor

(1
>

Sang-Woo Jun

Winter 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Goal of these exercises

J Lots of details are lost when described at a high level
o E.g., What information is sent between execute and memory stages?

A 4

A 4

A 4

Fetch Decode Execute

Memory —>| Writeback

J Experience the performance impact of modifications
o Clock speed? Cycle count?
o Instruction count won’t change since we’re working with the same software binary
o Time = clock period * cycle count * instruction count

| will guide you through pipelining, but not comment on performance
o See for yourself!

Hardware platform overview

(] Lattice ECP5-85F FPGA
] Host software loads software/data over USB to FPGA

d Configured with limited on-chip memory

o 8 KB on-chip memory
* Arbitrary choice... Hardware can support much more
. |
Enough for sudoku! EPGA

8KB

Memory

USB 7Y
Host 1

\ 4

A

Processor memory map

J Memory space divided into program and data
o 4 KB each

(J Host software loads program and data
J And then starts processor

(J No writes allowed in program space
o All writes to program are MMIQO’d into software
o Simply printed to screen at host

4 KB —

4 KB —

Data

Program

Initial sp
(8 KB)

Initial PC
(0 KB)

Processor code structure

J cs152-rv32i-bsv/

o projects/
= rv32i/
» processor/ -- Bluespec files for processor (Pipeline, register file, etc) <- You will work here
* sw/ -- Software benchmarks (sudoku)
* cpp/ -- Host software

o src/ -- Helper modules (USB communication, memory module, etc)

The big principle in hardware design

(J EVERYTHING is parallel!

d All function calls, all rule executions, all method polls, ...

1 If there are 10,000 rules (~= ‘always’ blocks),
ideally 10,000 rules will all be executing EVERY cycle

Basic microarchitecture in Bluespec:
The Interface

Projects/rv32i/processor/Processor.bsv

ProcessorlIfc;
method #(MemReq32) iMemReq; Processor
method iMemResp (Word data);
method #(MemReq32) dMemReq;
method dMemResp (Word data);

module mkProcessor(Processorlfc];
- #(Word) pc <- mkReg(0);

-~ RFile2RIW rf <- mkRFile2R1W; iMemReq iMemResp

dMemReq dMemResp

method #(MemReq32) dMemReq; Outside environment polls this method for memory requests

- dmemReqQ.deq;

- return dmemReqQ.first;

endmethod |

method dMemResp (Word data); Memory responses arrive in the processor

- dmemRespQ.enqg(data);
. enldrlnethod (Processor can engueue memory requests into dmemReqQ)
endamoaduLe

Everything outside the processor is provided

Basic microarchitecture in Bluespec:
The Interface

Projects/rv32i/processor/Processor.bsv

module mkProcessor(ProcessorIfc); . .
. Reg#(Word) pc <- mkReg(®); Register of type “Word” (32 bits)

RFile2R1W rf <=- mkRFile2R1W; RegBteere

FIFO#(MemReq32) imemReqQ <- mkFIFO;

FIFO#(Word) imemRespQ =<- mkFIFO; FIFOs of Memory Req types and Word types
FIFO#(MemReq32) dmemReqQ <- mkFIFO; .o .

FIFO#(Word) dmemRespQ <- mkFIFO; Default size is 2

Types are defined in processor/Defines.bsv

method ActionValue#(MemReq32) dMemReq;

dmemReqQ . deq;
return dmemReqQ.first; * Processor can make instruction and data memory

endmethod ..

method Action dMemResp(Word data); requests via '.mem_Req(_)* E_md dmemReqQ
dmemRespQ.enqg(data); e Responses will arrive via imemRespQ and dmemRespQ

endmethod

endmodule

Basic microarchitecture in Bluespec:
The stages

d A 4-stage implementation is provided

o Execute and memory merged into Execute for simplicity
* Good idea?

o Expressed via four ‘rules’
e doFetch
* doDecode

 doExecute
 doWriteback

J Not yet pipelined: Goal of the labs!

Basic microarchitecture in Bluespec:
Rules express combinational logic

typedef enum {Fetch, Decode, Execute, Writeback} ProcStage deriving (Eq,Bits);

module mkProcessor(ProcessorIfc);
— Reg#(ProcStage) stage <- mkReg(Fetch);

rule doFetch (stage == Fetch);

endrule
rule doDecode (stage == Decode);

endrule
rule dokExecute (stage == Execute);

endrule
rule doWriteback (stage == Writeback);

endrule
endmodule

IMPORTANT!
Rules express combinational circuits

Th e fetCh Stage Meaning there is no ordering between expressions!

(Unless there is dependency)

J Sends memory req via imemReqQ
J Engs into pipeline FIFO f2d

o Same naming convention between other stages (f2d, d2e, e2m)

rule doFetch (stage == Fetch);
Word curpc = pc;

imemReqQ.enq(MemReq32{write:False, addr:truncate(pc),word:?, bytes:3});

f2d.enq(F2D {pc: curpc});

Swrite("[O0x%8x:0x%4x] Fetching instruction count 0x%4x\n", cycles, curpc, instCnt);
stage == Decode;
endrule

f2d

A 4

Fetch Decode

The decode stage

d “decode” function defined in processor/Decode.bsv
o Extracts bit-encoded information and expands it into an easy-to-use structure

rule doDecode (stage == Decode);
let x = f2d.first;
f2d.deq;
wWord inst = imemRespQ.first;
imemRespQ.deq;

. Combinational decode
let dInst decode(inst); 4/_

let rvalil rf.rdi(dInst.srcil);
let rvalz rf.rd2(dInst.src2);

d2e.enq(D2E {pc: x.pc, dInst: dInst, rValil: rvali, rval2: rVval2});

Fwrite("[Ox%8X:0x%04x] decoding Ox%O8x\n", cycles, X.pc, inst);
. stage <= Execute;
endrule

J Let’s look at code! (Decode.bsv)

The decode function

J Analyzes the 32-bit encoded instruction

J Returns a decoded instruction that is easier to use by the rest of the

processor Decoded instruction Encoded instruction

{ function DecodedInst decode| #(32) inst);
IType iType; » let opcode = 1nst[6:0];
AluFunc JaluFunc: » let funct3 = inst[14:12];
BrFunc brFunc: : let funct? inst[31:25];
writeDst; ; let dst inst[11:7];
RIndx dst; : let srcl inst[19:15];
RIndx srcl; - let src2 inst[24:20];
RIndx src2; : let csr = 1nst[31:20];
Word imm;
SizeType size: : Word immI signExtend(inst[31:20]);
extendSigned; » Word immS signExtend({ inst[31:25], inst[11l:7] });

} DecodedInst deriving (, FShow) ;

, Sub, And, Or, Xor, S1t, Sltu, S11, Srl, Sra, Mul} AluFunc deriving (, FShow) ;

The decode function — Example

J Add instruction: funct7 == 0 && funct3 ==

o Dst, srcl, src2 exists, Instruction type is “OP” (register-register operation)

aIuFunc IS Add DecodedInst dInst = 7;

O

i i dinst.1Type = Unsupported;
o Noimm, size T e el
O

Not branch instruction EuESUEsE RN EIEL)
dInst.srcl = 0;
(BEQ, BNE, etc) dInst.src2 = 0: #(3) TnADD = 37000
case(opcode)
- opOp: begin
- if (funct7 == 7'b00RO0C00) begin
; - case (funct3

fnADD? dInst = DecodedInst { dst: dst, writeDst: True,
srcl: srcl, src2: src2, imm: 7, brFunc: ?,
aluFunc: , 1Type: OP, size: 7, extendSigned: 7 };

R-Type encoding funct7 rs2 rs1 funct3 rd opcode

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits
e.g., add x9,x20,x21 0 21 20 0 9 51

The execute stage

d “exec” implements ALU operations (in processor/Execute.bsv)

rule doExecute (stage == Execute);
D2E x = d2e.first;
d2e.deq;
Word curpc = x.pc;
Word rVall = x.rVall; Word rVal2 = x.rVal2;
DecodedInst dInst = x.dInst;

Bluespec functions are combinational
circuits (No state changes)

let elnst = exec(dInst, rVall, rVal2, curpc);
pc <= elnst.nextP(C;

if (eInst.iType == LOAD) begin non-pipelined version always sets pc for fetch

—

end

else 1if (eInst.iType == STORE) begin
end

else begin

- if(eInst.writeDst) begin
s Take a look at processor/Execute.bsv!

The writeback stage

J Straightforward enough!
o Let’s look at code! And notice handling of sighed/unsigned numbers

rule doWriteback (stage == Writeback);
: e2m.deq;

let r = e2m.first;

Word dw = r.data;

if (r.isMem) begin

- let data <- mem.dMem. resp;

-3 d'ﬂ':...;

end

rf.wr(r.dst, dw);
; stage <= Fetch;
endrule

Aside: Looking back at the critical path

J Which stage is the critical path?
o Look at the synthesis log!

J Was it a good idea to merge execute and memory?

Critical path report for clock '$glbnet$CLK_clk_25mhz$TRELLIS_IO_IN' (posedge -> posedge):
curr total
.5 0.5 Source main_proc.imemRespQ.data®_reg_TRELLIS_FF_Q_ 30_DI_PFUMX_Z

SLICE.QO
1.2 1.7 Net main_proc.imemRespQ_D_OUT[1] budget 3.042000 ns (44,26) (

43,27)

=

14.2 Source main_proc.d2e.data®_reg_TRELLIS_FF_Q_108_DI_L6MUX21_2Z D1_L6MUX21_Z_ DO_PFUMX_Z_SLICE.OFX1

[e

Info: .1 14. Net main_proc.d2e.data®@_reg_TRELLIS_FF_Q_108_DI budget 5.039000 ns (8,40) -= (8,40)
Info: Sink main_proc.d2e.data@_reg_TRELLIS_FF_Q_108_DI_L6MUX21_7 D1_L6MUX21_Z_DO_PFUMX_Z_ SLICE.DI1

L

Info: .0 14. Setup main_proc.d2e.data®_reg_TRELLIS_FF_Q_ 108 _DI_L6MUX21_Z7 D1_L6MUX21_Z_DO_PFUMX_Z_SLICE.DI1
Info: 3.8 ns logic, 10.5 ns routing

Looking at sample execution

sw/minisudoku.dump

N _ fedd2783 - lw- a5, -28(s0)

D Try running make runsim . fdc42703 , lw- ad,-36(s0)
. > 02e787b3 » mul-ab, a5, ad

d “Mul” not part of rv32i! . fefd2223 " sw- a5, -28(s0)

system.log » fe042783 » lw- ab,-32(s0)

[0x000212ee:0x049¢c] Fetching instruction count 0x40db
[0x000212F2:0x049c] decoding Oxfdcd42703
[0x000212F3:0x049c] Executing

[0x000212f3:0x049c] Mem read from 0x00001fdc output.log
[0x000212F7:0x049c] Writeback writing 00000002 to 14
[0x000212f8:0x04a0] Fetching instruction count 0x40dc
[0x000212fc:0x04a0] decoding 0x02e787b3
[0x000212fd:0x04a0} Executing

Reached unsupported instruction

Total Clock Cycles = 135933

Total Instruction Count = 16604

Dumping the state of the processor

pc = 0x000004a0

Quitting simulation.

| o
O WO~ &= WK =

=
=
o

Segmentation fault (core dumped) Don’t mind this for now

Additional output
With Mul implemented

First task for lab 2: Implement "Mul”

d Hint: Must change “Decode.bsv” and “Execute.bsv”

(J Decode.bsv:

o Opcode of Mul is “opOp” (Like “add” and others)

o Funct7 is 7'b0000001 (7 bit value of 1)

o Funct3is 3’b000 (3 bit value of 0), already provided with name “fnMUL”
o “Mul” is already added to enum AluFunc

o Hint: Decoded results are very similar to, say, Add

J Execute.bsv
o Mul should have an “OP” iType, which is an ALU operation
o “function Word alu” in Execute should be changed to perform Mul

CS152: Computer Systems Architecture
Pipelining The Processor

(1
>

Sang-Woo Jun

Winter 2022
Large amount of material adapted from MIT 6.004, “Computation Structures”,
U ‘ I Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,
and CS 152 Slides by Isaac Scherson

Let’'s start pipelining

1 Start with handling branch hazards

o Data hazards produce wrong results,

o but without handling branch hazards we cannot pipeline things at all
* Which address should Fetch read?

d Things to solve:
1. Branch hazard
2. Load-Use hazard
3. Read-After-Write hazard

Step 1: Simply remove guards

(J Remove register “stage”, and all references to it

//Reg#(ProcStage)
rule doFetch;// (
Word curpc

imemReqQ.enq(MemReq32{write:False,addr:truncate(pc),word:?,bytes:3});
f2d.enq(F2D {pc: curpc});

$write("[0x%8x:0x%4x] Fetching instruction count 0x%4x\n", cycles, curpc, fetchCnt);

fetchCnt <= fetchCnt + 1;

//stage <= Decode;
endrule

Leaving this would have created conflicts between rules
Resulting in mutually exclusive firing (NOT pipelined!)

Did that work?

system.log

[0x00002134:0x0368] Fetching instruction count 0x002f
[0x00002134:0x0368] Executing

[0x00002134:0x0368] Mem read from 0x00000ca8
[0x00002134:0x0364] Writeback writing 00001950 to 15
[0x00002137:0x0368] decoding 0x0007c7/03
[0x00002138:0x036¢c] Fetching instruction count 0x0030
[0x00002138:0x0368] decoding ©x0Q7c7/03
[0x00002138:0x0368] Executing

Execution hangs before reaching end!

[0x00002138:0x0368] Mem read from , . , , :
[0x00002139:0x036c]-Fetching instruction count 9x003 Same instruction loaded multiple times!

[0x0000213c:0x036c] decoding 0x000017b7
[0x0000213c:0x0368] Writeback writing 000000aa t
[0x0000213d:0x036¢c] Fetching instruction cocunt
[0x0000213d:0x0368] Executing

[0x0000213d:0x0368] Mem read from 0x00001950
[0x0000213e:0x036c] decoding 0x000017b7

[0x0000213f :0x036¢c] Fetching instruction count 0x0033
[0x00002141:0x0368] Writeback writing 000000aa to 14
[0x00002142:0x036¢c] Executing

[0x00002143:0x036c] decoding 0x000017b7
[0x00002144:0x0370] Fetching instruction count 0x0034

Step 2: Predict PC + 4

J Keep moving PC forward, predicting PC+4 every time

rule doFetch;// (
» Word curpc =

pc <= pc + 4; Added line to move PC forward

imemReqQ.enq(MemReq32{write:False,addr:truncate(pc),word:?,bytes:3});
f2d.enq(F2D {pc: curpc});

$write(

"[0x%8x:0x%4x] Fetching instruction count 0x%4x\n", cycles, curpc, fetchCnt);
fetchCnt <= fetchCnt + 1;

//stage <= Decode;
endrule

Did that work?

(J Encounters unsupported instruction after two instructions!

[0x000020c7:0x0008] Fetching instruction count 0x0002 Wrongly predicted jal will not branch
[0x000020c7:0x0004] decoding 0x33c000ef _9|
[0x000020c7:0x0000] Executing Should not have executed PC=8:
[0x000020c8:0x0004] Fetching instruction count 0x0003

[0x000020c8:0x0004] Executing
[
[
[
[
[

O0x000020c8:0x0000] Writeback writing 00002000 to 2
0x000020c9:0x0004] Writeback writing 00000008 to 1
0x000020ch:0x0008] decoding 0x00000000
0x000020cc:0x0340] Fetching instruction count 0x0004
0x000020cc:0x0004] decoding 0x33cQ00ef
[0x000020cc:0x0008] Executing
Reached unsupported instruction

We need mispredict handling

Total Clock Cycles = 8396
Total Instruction Count = 2 POOOEOOL <start>:
Dumping the state of the processor 0:- 00002137 -+ lui-sp,0x2

pc = Ox00000008 4:- 33c000ef - jal-ra,340 <main>
Quitting simuiation. 8:- 0000 - C.unimp

Step 3: Solve control hazards with epochs

(d Remember: Each instruction tagged with an epoch value

o Once mispredict is detected at execute
1. Correct PCis sent to fetch
2. Epochis updated
3. Futureinstructions arriving at execute marked with stale epoch are ignored

Step 3: Add epochs — Fetch

#(I Ll R A IR LGP IGEIE I |s @ Boolean epoch enough?
#(Word) redirect pcQ {- mkFIFOF;
rule doFetch;// (stage == Fetch);

» Word curpc = pc; Temporary variables can be updated within rule
- epoch = epoch_fetch;

(redirect_pcQ.notEmpty) begin
redirect _pcQ.deq;

ool G T new PC, update epoch
epoch = lepoch_fetch: Take new PC, update epoch

- epoch_fetch <= epoch;
end

Word predicted_pc = curpc + 4; ENSVEJIeilol N o/
fle o= [prsedlisiaze [ole; Can change this for better prediction

imemReqQ.enq(MemReq32{write:False,addr:truncate(curpc),word:?,bytes:3});

f2d.enq(F2D {pc: curpc, predicted pc:predicted pc, epoch:epoch});

' Execute needs to discover:

1. If prediction is correct
f2d needs to be augmented with predicted pc and epoch 2. If this is from a mispredicted path

Step 3: Add epochs — Execute

#() epoch_execute <- mkReg(False);
rule doExecute;// (stage == Execute);
D2E x = d2e.first;
d2e.deq;
Word curpc

X.pcC;
Word rVall x.rVall; Word rVal2 = x.rVal2;
DecodedInst dInst = x.dInst;

let elnst = exec(dInst, rVall, rVal2, curpc);

lgnore if epoch is wrong

if (x.epoch == epoch_execute) begin
if (eInst.nextPC != x.predicted pc) begin
- redirect_pcQ.enq(eInst.nextPC); : —
S e e LS el Update epoch, send new PC if prediction is wrong

end

if (eInst.iType == LOAD) begin

—3

Note: d2e also must be augmented with epoch
and predicted pc

Did that work?

J Hangs...

[0x000020ec:0x0368] decoding 0x0007c703

[0x000020ec:0x0364] Executing

[0x000020ec:0x0360] Writeback writing 00000000 to 15
[0x000020ed:0x0370] Fetching instruction count 0x0017
[0x000020ed: 0x0368] Executing Thecunentsyﬁev1doespotsuppoﬂ
[0x000020ed:0x0368] B Rir el | dmem read from instruction memory
[0x000020ed:0x0364] Writeback writing 0000100Ff to 15
[0x000020f0:0x036¢c] decoding 0x000017b7 Data hazard!
[0x000020F1:0x0374] Fetching instruction count 0x9018
[0x000020f1:0x0370] decoding Oxfff78793
[0x000020f1:0x036c] Executing - . - ;
[0x0000202:0x0378] Fetching instructf31¢:" 93979173 el Sado
[0x000020F5:0x0374] decoding 0x030707 : € bzl s EE

Mem read from program memory!

. : : :—» 06c0006f » jal-zero,3c0 <main+0x80>
[0x00002016:0x037c] Fetching instruct . 00001717 . auipc- ad,0x1

ca870713 » addi- ad,ad,-856 # 1000 <setin>
fecd42783 » lw- ab,-20(s0)

EOT707b3 » add-ab,ad,ab

PEO7c703 » Lbu-ad,0(ab)

Step 4: Solving data hazards

J Part 1: Stalling

o How to detect data hazards?

o The decode stage must know whether a previous instruction incurs data hazard
* Previous instruction in flight will write to a register | need to read from?

o Restriction: Detection must happen combinationally, within the decode cycle
e Otherwise, we will slow down the pipeline
* Or, break down decode into multiple pipeline stages

J Part2: Forwarding

o To be continued

Detecting data hazards: Scoreboard

J Module which keeps track of destination registers
o Decode inserts the destination register number (if any)

o Writeback removes oldest target
o Decode checks if any source registers exist in scoreboard, stall if so

1 Interface of scoreboard:

interface ScoreboardIfc#(numeric type cnt);
- method Action enq(Bit#(5) data); Insert destination register number

- method Action deq;

Remove oldest target

- method Bool searchl(Bit#(5) data);
- method Bool search2(Bit#(5) data);
endinterface

Two search methods for checking
maximum of two input operands

Why do we need two separate methods?
Both searches need to happen in same cycle!

Decode stage for correct stalling

1 Stall unless both input operands are not found in scoreboard
o if (!sb.searchl(dInst.srcl) && !sb.search2(dInst.src2)) begin
o f2d.deq and imemRespQ.deq should only be done when not stalling!

J When not stalling, insert destination register into scoreboard

O sb.enq(dlnst.dst) ScoreboardIfc#(8) sb <- mkScoreboard;

rule doDecode;// (stage == Decode);
- let x = f2d.first;
- Word inst = imemRespQ.first;

let dInst decode(inst);
let rVall rf.rdl(dInst.srcl);
let rVal2 rf.rd2(dInst.src2);

if (!sb.searchl(dInst.srcl) && !sb.search2(dInst.src2)) begin
- f2d.deq;

- imemRespQ.deq;

- sb.enq(dInst.dst);

—3
-
—3
—3
-
—3
—3
-

Writeback stage for correct stalling

J Writeback should remove the current instruction’s dst from scoreboard
o Allinstructions are in-order, so simply removing the oldest works

o call “sb.deq”

rule doWriteback;//

—3

—3

—3

e2m.deq;
let r = e2m.first;

sb.deq;

(stage == Writeback);

Scoreboard

A

enq

searchl,search?2

deq

Fetch

» Decode

» Execute

\ 4

Writeback

Does this work?

1 Stalls forever... We are not deq’ing some things we enq’d!

[0x0000206c:0x0008] decoding 0x00000000
[0x0000206d:0x0340] Fetching instruction count 0x0004
[

— |
0x0000206d:0x000c] decoding 0xfb010113 We only deq sb in writeback!

[0x0000206e:0x0344] Fetching instruction count 0x0005 Some instructions don’t reach writeback!
Stalled (doExecute doesn’t push into e2m)
Stalled * Epoch mismatch
Stalled e STORE instructions, ...
Stalled
Stalled
Stalled
Stalled
Stalled
Stalled
Stalled Scoreboard |«
Stalled -
: enq searchl,search?2 deq
Fetch » Decode » Execute » Writeback

Continuing Step 4. Data hazards

J Do we put sb.deq in execute as well?

o No! sb has in-order semantics,
o if execute and writeback try to deq at the same time, incorrect behavior...

d All instructions arriving at doExecute should enq something into e2m
o Even if, say misprediction detected via epochs

o sb.deq only in doWriteback
o Should not wait for memory, should not write anything to rf
o isMem = False, dst =0

Does this work?

d Yes! Finally correct results!
d How is performance? Can we do better? output.log

system.log

[0x00010eb2:0x0008] Fetching instruction count 0xdaec
[0x00010eb3:0x0530] Writeback writing 55555555 to 0
[0x00010eb4:0x0534] decoding 0x00000000
[0x00010eb5:0x000c] Fetching instruction count 0x4aed
[

[

[

0x00010eb6:0x0008] decoding 0x00000000
0x00010eb6:0x0534] Writeback writing 55555555 to 0
0x00010eb7:0x0010] Fetching instruction count Ox4aee
[0x00010eb7:0x0008] Executing

Reached unsupported instruction

Total Clock Cycles = 69303

Total Instruction Count = 16872 OOOOOOOO <start>:

Dumping the state of the processor 0:- 00002137 - lui-sp,0x2

pc = Ox00000008 4:- 33c000ef - jal-ra,340 <main>

Quitting simulation. 8:- 0000 - C.unimp

[
WOk WwNPE

[
|
o

Things to solve

1. Branch hazard — Done!
2. Load-Use hazard — Stalling

3. Read-After-Write hazard — Stalling, Forwarding
* Pipeline is correct already, but now to improve performance!

Implementing forwarding

J Add a combinational forwarding path from execute to decode

o If the current cycle’s execute results can be used as one of inputs of decode, use
that value

J Regardless of whether scoreboard.search1/2 returns true or false,
If forward path has a source operand, we can use that value and not stall

Register
File

—

Fetch » Decode » Execute > Writeback

Aside: Inter-rule
combinational communication in Bluespec

J So far, communication between rules have been via state
o Registers, FIFOs
o State updates only become visible at the next cycle!

o How do we make doExecute send bypass information to doDecode
combinationally?

[Solution: “Wires”

o Used just like Bluespec Registers, except data is available in the same clock cycle
o Data is not stored across clock cycles

o Many types, but easiest is “mkDWire”
* Provide a “default” value, which will be read if the wire is not written to within that cycle

AGHIEPDIRE N O Y E PR SR SRRsdll 32 bit wire with default value of OXFffffff

Aside: Inter-rule
combinational communication in Bluespec

J Execute stage should provide two values {
- RIndx dst;

o Destination register index, and its new value |EEEETASrEp

o Create a wire that can combinationally send ESlEEEI SRRl
* Default value is for the zero register, since zero register value is always zero

#(BypassTarget) forwardE <- mkDWire(BypassTarget{dst:0,data:0});

In Execute forwardE <= BypassTarget{dst:eInst.dst, data:elnst.data};

In Decode stallSrcl = sb.searchl(dInst.srcl);
stallSrc2 = sb.search2(dInst.src2);

if (forwardE.dst > 0) begin
- if (forwardE.dst == dInst.srcl) begin
- stallSrcl = False;
- rVall = forwardE.data;
end
if (forwardE.dst == dInst.src2) begin

How fast is it now?

J Add some debug output for counting stall cycles

if (!stallSrcl && !stallSrc2) begin

-

- $write("[0x%8x:0x%04x] Decoding 0x%08x\n", cycles, x.pc, inst);

end else begin
- $write("[0x%8x:0x%04x] Decode stalled -- %d %d\n", cycles, x.pc, dInst.srcl, dInst.src2);

end

Count stall cycles with: cat system.log | grep stalled | wc -I

Question: How much faster is it now? How many milliseconds?

Some more detalls of
current forwarding implementation

Some microbenchmark

Why did this stall?
[0x00000005:0x0010] Decode stalled -- 5 O
[0x00000005:0x0008] Writeback writing 00001000 to 5
[0x00000006:0x0010] Decoding 0x0042a903
[0x00000006:0x000c] Writeback writing 00000001 to 9
[0x00000007:0x0018] Fetching instruction count 0x0006

Mem read from 0x00001004

[0x00000007:0x0014] Decode stalled -- 9 18
[0x00000008:0x0014] Decode stalled -- 9 18 k

Load-use hazard must stall

0: 40000313 addi x6,x0,1024
4: 00001297 auipc x5,0x1
8: ffc28293 addi x5,x5,-4
c: 0002a483 Iw x9,0(x5)
10: 00423903 lw x18,4(x5)
14: 012489b3 add x19,x9,x18
18: 01332023 sw x19,0(x6) [0x00000007:0x0010]
lc: c0001073 unimp [0x00000007:0x0010] Executing
Register |
File
Fetch » Decode » Execute >

Writeback Why did instruction 0x10 stall?

A more complete forwarding solution

J Writeback needs a forwarding path too!

J x5 is available from register file after
Writeback of addi

o An instruction dependent (lw) on x5 which iy
is in decode while addi is in Writeback must | 1s:

stall

Microbenchmark

 If we add a second forwarding path, we

can remove a stall cycle
o Worth it? Maybe!
o Needs benchmarking!

0: 40000313 addi x6,x0,1024
4: 00001297 auipc x5,0x1
8: ffc28293 addi x5,x5,-4
c: 00022483 Iw x9,0(x5) IZ-cycle gap
10: 00423903 Iw x18,4(x5)
: 012489b3 add x19,x9,x18

01332023 sw x19,0(x6)

1c: c0001073 unimp
Register |
File
Fetch » Decode » Execute > Writeback

The overall performance at this point

d If you have followed along to this point

o IPC~=0.25
o Clock speed...? Which of our modifications had the biggest impact on clock speed?

o Total time...?

o Were our decisions good ones?

d IPC s still not good!
o What is the reason? (Best guess is fine!) — Mispredicts? Data hazards?
o Will some of our later topics address this?

